Mid-Chapter Review

Frequently Asked Questions

Q: How can you decide whether to use millimetres, metres, or centimetres for measuring?

Relating Units of Measurement
$1 \mathrm{~cm}=10 \mathrm{~mm}$
$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~m}=1000 \mathrm{~mm}$

A: You can use millimetres to measure very small distances, metres to measure longer distances, and centimetres to measure in-between distances.
1 mm is about the thickness of a dime.
1 cm is about the width of a fingernail.
1 m is about the distance from a doorknob to the floor.

Q: If two rectangles have the same perimeter, do they have the same area?

A: Rectangles that have the same perimeter can have different areas. If two rectangles have the same perimeter, the rectangle that looks more like a square has the greater area.

Perimeter $=10 \mathrm{~cm}$
Area $=6 \mathrm{~cm}^{2}$

Perimeter $=10 \mathrm{~cm}$
Area $=4 \mathrm{~cm}^{2}$

Q: If two rectangles have the same area, do they have the same perimeter?
A. Rectangles that have the same area can have different perimeters. If two rectangles have the same area, the rectangle that looks more like a square has the lesser perimeter.

Area $=6 \mathrm{~cm}^{2}$
Perimeter $=10 \mathrm{~cm}$

Area $=6 \mathrm{~cm}^{2}$
Perimeter $=14 \mathrm{~cm}$

Practice

Lesson 1

1. Measure and record each length in millimetres.
a)
b)
2. Draw a line with each length.
a) 31 mm
b) 67 mm
3. An object is 4 m long.
a) How many centimetres long is it?
b) How many millimetres long is it?

Lesson 2

4. Name an object that could have each length.
a) 1 mm
b) 5 mm
c) 60 cm
d) 30 m
5. What objects could you measure with each unit? Give two possible answers for each.
a) millimetres
b) metres

Lesson 3

6. Sketch two different rectangles with a perimeter of 48 cm . Use 1 cm grid paper.

Lesson 4

7. a) Sketch two different rectangles with an area of $18 \mathrm{~cm}^{2}$. Use 1 cm grid paper.
b) Which rectangle has the lesser perimeter?
8. Rectangle A and Rectangle B have the same perimeter, but the area of Rectangle A is much greater.
Which rectangle looks more like a square? How do you know?
9. Why might someone who is planning to build a deck want to think about the relationship between the area and the perimeter of a rectangle?

